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Abstract
Designing highly targeted, selective drugs with desirable absorption, distribution, 
metabolism, excretion, and pharmacokinetic (PK) profiles; single-digit nanomolar 
efficacy; and a wider therapeutic index are challenging. In the traditional drug 
discovery process, researchers screen thousands of chemical compounds during 
pre-clinical development, progressing through hit identification, lead optimization, 
and candidate selection to shortlist – potential clinical candidates with favorable 
PK profiles, high tolerability, and manageable toxicity. The selected candidate must 
demonstrate sufficient efficacy in treating the target disease in humans. Despite these 
efforts, the success rate of the pre-clinical candidate to sail through Phase I, Phase II, 
and Phase III in clinical trials remains exceedingly low. Supported by powerful data-
driven tools, artificial intelligence (AI) has transformed this traditional drug discovery 
process by enabling the analysis of large quantities of omics, phenotypic, and 
expression data to identify the biological mechanisms of pathological conditions 
and in turn identify druggable proteins or genes. The generative AI-powered toolbox 
creates novel compounds from scratch, assists scientists in optimizing druggability 
attributes, and bridges the differences between animal and human physiology and 
anatomy to predict potential toxicity in humans with high accuracy. This review 
discusses the bottlenecks in the traditional drug discovery approach, the impact of 
AI and machine learning (ML) in drug discovery, and potential challenges associated 
with AI/ML adoption.

Keywords: Novel chemical entity; Absorption, distribution, metabolism, and excretion; 
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1. Introduction
Artificial intelligence (AI) has revolutionized drug discovery and development by 
identifying novel targets, predicting drug–target interactions with high accuracy, 
designing compounds from scratch, facilitating in silico pharmacokinetic (PK) and 
pharmacodynamic analyses, and optimizing drug formulations for the intended route 
of administration. AI-assisted prediction of the physiochemical properties, bioactivity, 
binding affinity, and multitarget effects of new chemical entities (NCEs) is greatly 
benefiting drug discovery companies, enabling them to anticipate druggability attributes 
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and prioritize compounds for wet-laboratory profiling 
accordingly. As a result, the chemical synthesis of novel 
moieties for wet-laboratory evaluation has been reduced 
to one-tenth of the previous workload. AI predictive tools 
are also helping researchers identify potentially unsuitable 
molecules early in the pre-clinical stage, allowing them 
to “fail fast” and save both time and resources. This 
revolutionary AI approach has not only impacted the 
discovery and pre-clinical development of new drugs but 
has also refined clinical trials through improved patient 
selection and stratification, generation of early safety and 
tolerability warning signals, and real-time collation of 
multicentric clinical trial data, thereby increasing success 
rates. AI has further facilitated the generation of clinical 
trial procedures and reports, helping clinicians draw 
meaningful insights from the vast data produced during 
multicentric trials. This mini-review briefly discusses the 
conventional drug discovery and pre-clinical development 
process, setbacks associated with traditional methods, 
and how AI is bridging these gaps to accelerate new drug 
development. Furthermore, it explores the challenges and 
limitations associated with the implementation of AI in 
both pre-clinical and clinical settings.

2. Drug discovery and development
Drug discovery and development is a challenging, 
lengthy, and costly process. The time taken for a drug 
to move from the wet-laboratory stage to market is 
approximately 10 – 12 years, with costs ranging from $161 
million to $4.54 billion.1

Despite the investment of billions of dollars, significant 
efforts, and resources, nearly nine out of 10 potential drug 
candidates fail in clinical trials,2 and only one progresses 
from bench to bedside. The Center for Drug Evaluation and 
Research (CDER-USFDA) approved 50 new drugs in 2021, 
37 in 2022, 55 in 2023, and 22 (as of this writing) in 2024. 
For NCEs entering first-in-human trials, the failure rate 
remains high: around 80% in the cardiovascular segment, 
84% in arthritis pain and infectious diseases, and 92 – 95% 
in oncology and central nervous system therapeutics. Some 
reasons for the high attrition rate in clinical trials include 
off-target toxic side effects/unmanageable toxicity, poor 
PK properties, and suboptimal clinical efficacy.3 Figure 1 
shows the various stages of classical drug discovery and the 
pre-clinical development flow.

More focused efforts are now being made to develop 
methods and approaches that accelerate the drug 
discovery process, reduce research and development costs, 
and increase the success rate of clinical candidates. Assay 
miniaturization technologies and the availability of highly 
selective, sensitive analytical instruments have shaped 

next-generation drug discovery.4 In silico absorption, 
distribution, metabolism, and excretion (ADME) 
screening, combined with cost-effective and less labor-
intensive in vitro studies, is being adopted in early drug 
discovery to selectively eliminate compounds with poor 
ADME and PK attributes.5

Innovative approaches are being used to design targeted 
chemical libraries or fine-tune the ADME profile of NCEs 
transitioning into lead optimization to reduce late-stage 
attrition rates.6 In addition, developing in vitro model 
systems that resemble or closely mimic human tissues or 
organs to predict acute drug toxicity or establish a PK/PD 
relationship to reduce clinical-stage failures is becoming a 
trend.7,8 The USFDA recently accepted pre-clinical efficacy 
results from human organ-on-a-chip models and approved 
the clinical trial IND application for the mAb sutimlimab, 
manufactured by Sanofi.

2.1. Drug safety and toxicity

Drug safety and toxicity evaluation, spanning both 
pre-clinical and clinical trials, is a crucial step in drug 
discovery and development. Its aim is to identify and 
assess any potential side effects or adverse responses to 
the drug. Pre-clinical safety evaluations primarily rely on 
animal testing in rodent and non-rodent species, with 
variations in duration, design, and objectives. These studies 
include general toxicity, reproductive and developmental 
toxicity, carcinogenicity, immunotoxicity, and functional 
evaluations of key organ systems, such as the respiratory, 
central nervous, and cardiovascular systems. Identification 
of possible toxicity in humans, characterization of the 
toxicity (morphology, dose-response, reversibility, etc.), 
and assessment of whether it can be effectively monitored 
and managed in human clinical trials are the main 
objectives of pre-clinical drug safety assessment research. 
Pre-clinical studies also produce endpoints commonly 
used to assess health and disease in humans, such as serum 
biochemistry, hematology, urinalysis, histopathology, and 
vital organ function evaluation.

Conventionally, NCEs progress through drug discovery 
stages until crucial data reveal a low safety margin 
(therapeutic index), suboptimal efficacy at clinically 
relevant doses, or an undesirable PK profile. If the pre-
clinical data are unconvincing, further development of 
the NCE is halted, and sometimes, the entire program for 
that target is abandoned. This causes significant setbacks, 
resulting in considerable losses of time, resources, and 
money. For selected candidates, drug safety and tolerability 
present major clinical challenges, with safety concerns 
accounting for 35% of Phase I failures and 28% of Phase 
II failures.
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2.2. Toxicity-driven phase IV withdrawals

Unexpected toxicity is the primary reason for drug dropouts 
not only during clinical trials but also in post-marketing 
[Phase IV] withdrawals. It is nearly impossible to predict 
drug safety and toxicity with confidence even in late-stage 
development, as rare adverse events often appear only after 
the drug has been administered to a large global population 
with diverse medical histories. Toxicity-related drug failures 
account for two-thirds of post-market withdrawals.9

For instance, aprotinin (Trasylol) was withdrawn 
due to increased risk of death, Tegaserod (Zelnorm) due 
to heightened risk of heart attack and stroke, pergolide 
mesylate (Permax) due to severe heart valve damage, 
ximelagatran (Exanta), and pemoline (Cylert) due to their 
hepatotoxicity, and rofecoxib (Vioxx) as it led to myocardial 
infarction as a toxic effect.

In the United States, drug toxicity is the leading cause 
of acute hepatotoxicity, with over half of acute liver failures 
caused by idiosyncratic drug-induced liver injury (iDILI).10 
It is possible for iDILI to go unnoticed even in large phase 
III trials.

2.3. Drug-induced liver injury (DILI)

DILI is among the most unpredictable adverse reactions 
to xenobiotics in humans, causing hepatotoxicity, liver 

necrosis, and alterations in hepatic enzyme levels.11-14 It is 
the leading cause of post-market withdrawals of approved 
drugs such as troglitazone, tolcapone, trovafloxacin, 
bromfenac, nefazodone, ximelagatran, lumiracoxib, and 
sitaxentan. Acetaminophen is the second-most frequent 
cause of acute liver injury and hepatic failure worldwide, 
often requiring liver transplantation. Marketed antibiotics – 
amoxicillin-clavulanate, trimethoprim, and erythromycin 
– also contribute to the list of hepatotoxic drugs.

NCEs, or withdrawn drugs such as nefazodone and 
troglitazone, interfere with bile acid homeostasis, which 
is vital for hepatocyte survival, by inhibiting the bile salt 
export pump (BSEP), an ATP-binding cassette transporter 
crucial for maintaining bilirubin and bile salt homeostasis. 
Inhibition of BSEP is a risk factor for cholestatic DILI, 
as it can cause accumulation of bile acids in hepatocytes, 
thereby increasing liver toxicity. In addition, NCEs can 
directly contribute to liver toxicity by altering the exposure 
and clearance of drugs that are substrates for efflux 
transporters. Figure 2 illustrates the metabolic pathway of 
troglitazone and its metabolites, which leads to cholestasis 
and liver toxicity.

An example of a toxicity-centric drug discovery strategy 
involved identifying an active scaffold with single-digit 
nM in vitro potency. In vivo studies were then conducted, 

Figure 1. Classical drug discovery and pre-clinical development flow
Abbreviations: MOA: Mechanism of action; NCE: New chemical entity; DMPK: Drug metabolism and pharmacokinetics; ADME: Absorption, distribution, 
metabolism, and excretion; CYP: Cytochrome P450; PD: Pharmacodynamics; PPB: Plasma protein binding; BA: Bioanalytical; MD: Method development; 
MV: Method validation; GLP: Good laboratory practice; MTD: Maximum tolerable dose; DRF: Dose range finding; hERG: human Ether-à-go-go-related 
gene; FaSSIF: Fasted state simulated intestinal fluid; FeSSIF: Fed state simulated intestinal fluid; FaSSGF: Fasted state simulated gastric fluid.
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including rodent PK, efficacy testing in a rodent disease 
model, and acute toxicity experiments. If the compound 
proved effective and was expected to achieve the same 
efficacy in humans at a total daily dose of ≤100 mg with 
manageable toxicity, the pre-clinical screening approach 
for backup/follow-on compounds was reversed. New 
variants of that scaffold were first subjected to in vitro 
profiling, followed by a mouse cassette PK study.

The in vivo toxicity of each variant was assessed, 
followed by efficacy studies. Widening of the therapeutic 
index allows for the acceptance of somewhat lower potency.

Figure 3 illustrates the in vitro and in vivo tests specified 
by the Organization for Economic Co-operation and 
Development to assess the genotoxicity, mutagenicity, and 
organ-specific toxicity of NCEs as well as the corresponding 
AI/machine learning (ML) tools for in silico prediction.

2.4. Drug toxicity effect translation from animals to 
humans

However, toxicological data derived from animal models 
align with human outcomes in only 63% of cases when 
extrapolated from non-rodents and 43% from rodents and 
< 30% when predicting adverse drug reactions in humans. 
In addition, drug-induced neurobehavioral symptoms such 
as nausea, somnolence, and dizziness, which are common 
in patients and often lead to intolerance, are poorly 
predicted by animal studies using conventional endpoints.15 
Approximately 90% of drug candidates fail, largely because 
animal studies cannot reliably predict efficacy, safety, 

and human responses due to species differences.16 These 
translational limitations have heightened concerns that 
animal studies may mislead us, contributing to clinical 
candidate failures. It is also important to note that 
selecting the appropriate non-rodent species for pre-
clinical evaluation plays a key role in the clinical success of 
NCEs. For example, in evaluating a new oral drug with an 
extended or sustained-release formulation, minipigs may 
provide more relevant data than beagle dogs. This is because 
pigs more closely resemble humans than beagle dogs in 
terms of gut anatomy (intestinal length per kilogram of 
body weight), physiology, bacterial gut colonization, skin 
architecture, and body fat distribution.17

2.5. Animal testing alternatives

The USFDA Modernization Act 2.0 allows for alternatives 
to animal testing, enabling the use of pre-clinical assays 
that utilize organ-on-chip platforms, organoids, and 
3D spheroid cultures of human origin to better predict 
potential toxicities in humans. Recently, the USFDA 
favorably considered pre-clinical efficacy results from 
human organ-on-chip research, alongside existing safety 
data, to approve the clinical trial IND application of 
sutimlimab developed by Sanofi.

Notably, primary cultures of cells derived from the human 
heart, liver, or kidney can display differentiated functions, in 
addition to toxicity markers, and mimic responses observed 
in intact tissues. However, the challenge of maintaining a 
normal gene expression profile and dynamic biochemical 
responses to varying drug concentrations remains unresolved. 

Figure 2. Biotransformation of the peroxisome proliferator-activated receptor gamma agonist “Troglitazone”
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Bridging the gap between static in vitro models and dynamic 
in vivo homeostatic systems is difficult. Furthermore, these 
models need to undergo extensive validation to demonstrate 
limited interexperiment and inter-laboratory variability 
as well as reproducibility in in vitro in vivo correlation. 
Therefore, these models are currently used for exploratory 
toxicology and establishing PK/PD relationships.

For in silico predictions, knowledge-based standalone 
quantitative structure-activity relationship tools have long 
been available. Examples include Derek, Meteor, StAR, and 
TopKat for drug toxicity, Ecosar for ecotoxicity, and Biowin 
for biodegradability prediction. However, traditional 
approaches based on structure-activity relationships 
and physicochemical attributes did not account for drug 
interactions with the human-specific liver proteome, 
resulting in inaccurate predictions of DILI.18 Over the 
past decade, it has become clear that integrating various 
drug discovery verticals into a unified computational tool 
is essential to lowering attrition rates and shortening the 
drug discovery timeline. AI/ML models that combine 
physicochemical attributes, anticipated on-target biological 
interactions, and predicted off-target toxicity in humans 
can help address gaps in predicting DILI.

Recently, there has been a parallel emphasis on AI/
ML-based approaches to accelerate the drug discovery 
process and reduce NCE failures during clinical trials and 
phase IV withdrawals of marketed drugs.

3. New drug discovery in the AL/ML era
Over recent years, numerous AI/ML approaches have been 
developed and successfully implemented at various stages 

of drug discovery and development, from hit identification 
to candidate selection for clinical trials.

During the lead discovery phase, AI models such as 
recurrent neural networks and generative adversarial 
networks generate NCEs, predict target binding affinities, 
and expedite candidate selection. Molecular dynamic 
simulations and ML approaches enhance the efficiency and 
accuracy of de novo drug design.

Compounds predicted to have poor in vitro ADME 
(solubility, permeability, chemical, and metabolic stability), 
suboptimal PK properties (low oral bioavailability), drug–
drug interaction (DDI) potential (CYP inhibition or 
induction), and toxicity (mechanism/off-target) that could 
affect the clinical safety and efficacy of NCEs are effectively 
identified and circumvented by AI/ML-powered virtual 
strategic planning platforms.19,20 Consequently, the holistic 
AI/ML-driven evaluation across all drug discovery verticals 
facilitates early no-go decisions.21,22 Figure  4 outlines the 
brief history of AI-driven drug discovery beginning - 2017 
– 2018.

3.1. AI

AI, a branch of computational science, focuses on creating 
systems that perform tasks typically requiring human 
intelligence. In drug discovery, AI has been successfully 
applied to target protein structure identification,23,24 de 
novo drug design,25,26 compound docking studies,27 virtual 
screening,28,29 retrosynthesis reaction prediction,30,31 
bioactivity and toxicity prediction,32,33 and in silico clinical 
trials.34 Figure  5 illustrates AI, its subsets, and respective 
tools.

Figure 3. Drug toxicity evaluation: wet-laboratory experiments and artificial intelligence/machine learning-based in silico prediction tools
Abbreviation: OECD: Organization for Economic Co-operation and Development.
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Next-generation AI/ML tools, such as AIDDISON, 
PREDICT, MANTRA, RoseTTAfold, ESMFold, 
OpenFold, ProGen, ProteinMPNN, EvoDiff, RFdiffusion, 
BioGPT, chatPandaGPT, enhance data quality and 
prediction accuracy by integrating PK profiles, DDI, 
off-target toxicity, chemical scaffold-driven toxicity, 
animal toxicity versus human primary culture toxicity, 

and geographical ethnicity differences in patient 
population response (driven by physiological, genetic, 
and environmental factors) to administered NCEs.24,35,36 
Molecular docking tools, such as AutoDock 4, AutoDock 
Vina, DiffDock, Deep Docking, and DL-DockVS, dock 
a single ligand by evaluating different poses and atoms 
in parallel, reducing computational analysis time.37,38 

Figure 4. A brief history of artificial intelligence-driven drug discovery beginning 2017 – 2018

Figure 5. Artificial intelligence, its subsets, and respective tools
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Figure 6 illustrates AI/ML-powered drug discovery and 
development workflow.

AlphaFold2, for instance, presents new prospects for 
structure-based drug discovery, particularly for proteins 
with unverified structures.39 However, AlphaFold2 data 
can be difficult to interpret, and its output in virtual 
screening has shown inconsistent results when protein 
folding and dynamic conformational changes are not taken 
into account.40 Although AlphaFold2 performs well in the 
domain of structure prediction, it falls short in addressing 

conformational dynamics41 and multimeric structure 
prediction.

An improved version, “AlphaFold3,” codeveloped by 
Google DeepMind and Isomorphic, was released in May 
2024. AlphaFold3 can predict the nature of protein–
molecule interactions far more effectively than AlphaFold2. 
While AlphaFold2 is primarily focused on predicting 
protein structures, AlphaFold 3 extends its capabilities to 
predict interactions between proteins and a wider range 
of molecules, including DNA, RNA, and small-molecule 
ligands. Figure 7 lists several examples of AI-assisted and 
generative AI (GenAI)-driven drugs.

3.2. AI-driven drug toxicity prediction

Optimizing the chemical structures of NCEs to enhance 
their biological activities while ensuring suitable safety 
profiles (such as low in vitro and in vivo toxicity) is 
challenging. Newly designed molecules will be less toxic 
only if their physicochemical characteristics and potential 
off-target effects are considered alongside their biological 
activity in a dynamic setting.

The availability of big data and open-access toxicological 
datasets has made toxicity prediction feasible.42 For example, 
the chemoinformatic platform “ChemTunes•ToxGPS®” 
developed by Molecular Networks and Altamira integrates 
multiple databases, including physicochemical parameters, 
xenobiotic metabolism, toxicokinetics, and the ToxCast/
Tox21 database, to support the safety and risk assessment 
of chemical substances. Figure 8 illustrates the role of ML 
in drug toxicity prediction.

The discontinuation of the first two AI-designed 
clinical candidates (Exscientia’s cancer drug EXS-21546 

Figure 7. Examples of artificial intelligence-assisted and GenAI drugs
Abbreviations: A2A: Adenosine A2a receptor antagonist; NSCLC: Non-small cell lung cancer; RCC: Renal cell carcinoma; USFDA: United States Food 
and Drug Administration.

Figure 6. Artificial intelligence/machine learning-driven drug discovery 
workflow
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and BenevolentAI’s dermatitis drug BEN-2293) was 
a setback. However, BenevolentAI’s repurposed drug 
Olumiant (baricitinib, a rheumatoid arthritis therapy) was 
approved by the US FDA in May 2022 for the treatment of 
COVID-19.

3.3. ML

ML, a subfield of AI, uses defined datasets to create 
algorithms for developing predictive and descriptive models, 
which are useful for analyzing data, drawing insights, and 
making informed decisions. There are two types of ML 
models based on the data used to generate an algorithm: 
Supervised and unsupervised. Supervised ML models are 
trained with labeled input data and a defined outcome, 
whereas unsupervised ML models use raw input data to find 
relevant patterns and relationships without prior knowledge.

In recent years, ML has become a powerful tool in 
drug discovery, transforming the way we investigate 
and understand large, complex information about drug 
behavior in biological systems. ML predicts novel drug–
target interactions with reasonable accuracy.43 Clinical trial 
datasets have been used to build ML models that forecast 
trial success early, thereby reducing unrecoverable costs 
and saving time.

Large language models (LLMs), a component of AI’s 
natural language processing that overlaps with ML, are 
gaining importance and popularity. By drawing scientifically 
valid conclusions from large datasets, such as genomic, 
proteomic, and metabolomic data, and existing literature, 
LLMs help researchers generate hypotheses and make sense 
of voluminous experimental data. LLMs effectively analyze 
large biological datasets to predict new druggable targets 
that conventional approaches may miss. Furthermore, 
LLMs assist in drug repositioning and repurposing.

3.4. Deep learning (DL)

DL, a subbranch of ML, learns from algorithms and 
their outcome data to further improve using neural 
networks.44 This disruptive technology has been effectively 
applied in various complex scenarios. For instance, NCEs 
may have weak interaction strengths but be highly target-
selective, meaning they exhibit strong target selectivity but 
relatively low absolute potency. In these cases, the goal is 
to balance NCE potency and selectivity, finding the most 
selective molecule with the minimum desirable potency. 
Tools such as Affinity2Vec, DeepDTA, and DeepGS can 
predict drug–target binding affinity, assign binding affinity 
scores, and rank compounds.45-47

One approach to improving a ligand’s druggability 
during the lead optimization phase is to expand it by 
adding a single chemical group (fragment). Fragment-
based drug design, on the other hand, involves adding 
multiple fragments. Geometric DL helps expand the ligand 
by identifying the site(s) on the ligand to add fragments, 
suggesting the most suitable fragments, and predicting the 
geometry of the added fragments.48

Furthermore, DL tools predict chemical toxicity 
by comparing millions of known substances based on 
biological mechanisms or physicochemical features. DL 
algorithms trained on datasets of well-known medications 
can accurately forecast the activity of NCEs.49

3.5. GenAI

GenAI, a subset of DL, creates new content based on 
learned information. As one of the most advanced 
forms of AI, GenAI can generate new molecules from 
training data. To develop novel molecules for specific 
applications or predict their behavior in biological 
environments (e.g., receptor binding), algorithms are 
trained on the chemical–physical features and 3D forms 
of molecules.

GenAI, coupled with data analytics, can design 
structures with optimal druggability attributes and predict 
their physicochemical properties, drug–target interactions, 
potency, efficacy, and toxicity with reasonable accuracy. It 
also aids in designing the most suitable drug formulation 
and delivery system, which improves stability and oral 
bioavailability. In addition, GenAI can reduce the time 
required for regulatory dossier submissions. During clinical 
evaluation, GenAI assists in drafting the best-fit clinical 
trial design and patient recruitment strategies. AI tools 
help identify novel biomarkers and surrogate endpoints 
to predict patient responses to treatment. Furthermore, 
GenAI can infer safety and tolerability signals for early 
intervention, improving clinical trial success rates.

Figure 8. Role of machine learning in drug toxicity prediction
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Leveraging GenAI for drug discovery and pre-clinical 
development, in silico medicine identified a molecule 
target, generated novel drugs, assessed target binding and 
pre-clinical efficacy, and predicted clinical outcomes for 
lead candidates. Following pivotal pre-clinical studies, 
“INS018_055” was selected and is now in phase IIa clinical 
trials. Just 18 months after the project began, in February 
2021, the pre-clinical candidate was chosen. Insilico’s 
Biology42: PandaOmics and Chemistry42 – generative 
chemistry platforms were used to create INS018_055 for 
treating idiopathic pulmonary fibrosis. It was developed 
from scratch in just 3  weeks, with another 3  weeks to 
validate the compound for treating fibrosis.50 This process 
would have taken at least 2  years if it had followed the 
traditional discovery route. Further, to reach clinical 
evaluation, it would have taken >$400 million and up 
to 6  years for NCE if pursued through traditional drug 
discovery methods. These milestones were achieved by 
in silico medicine in a third of the time and at a tenth of 
the expense.

4. Small but significant challenges
Developing AI/ML tools is cost-intensive, with a significant 
portion of drug development expenses allocated to clinical 
trials. Although the cost and duration of clinical trials may 
remain unchanged with AI/ML, these technologies greatly 
facilitate the customization of clinical trial protocols, patient 
selection, stratification and retention, real-time clinical 
data analysis, and forecasting of safety and efficacy trends. 
Thus, investing significant time, money, and resources in 
creating these tools is expected to meaningfully reduce the 
bench-to-bedside timespan and cost.

However, the advanced coding and programming skills 
required for AI/ML tool creation make it challenging for 
many small and mid-size pharma R&Ds to develop these 
tools in-house. Consequently, they often rely on in-licensing 
tools from software tech giants or partnering with them to 
access AI/ML tools. Using AI/ML tools from software tech 
companies under non-exclusive agreements carries risks of 
intellectual property loss or data breaches unless they are 
operated on-premises, such as with “PandaOmics Box.”36

With the advent of AI and ML, NCEs are designed 
in silico, and their physiochemical characteristics, PK 
parameters, in vitro and in vivo efficacy, and toxicity 
properties are predicted using advanced computational 
algorithms. From an initial selection of 50 – 100 molecules, 
only 5 – 10% that meet the highly desirable predicted 
parameters are subjected to wet-laboratory profiling. This 
approach significantly reduces animal usage and eliminates 
the chances of serendipitous drug discovery. Therefore, 
the discovery of molecules such as penicillin, warfarin, 

cisplatin, lysergic acid diethylamide, meprobamate, and 
chlorpromazine is no longer expected. Notably, a study 
published in 2012 indicated that 24% of all marketed 
drugs and 35% of anticancer drugs have originated from 
serendipitous discoveries.51

The success of AI depends on data. Large datasets are 
essential for effectively training AI-driven approaches. 
Unfortunately, data are sometimes limited, low in quality, 
inconsistent, or biased, compromising the reliability and 
accuracy of the findings.

GenAI models trained on skewed or partial data or on 
prior trials of similar medications will reflect these biases 
in their results. While GenAI algorithms can explore and 
develop unique chemical structures previously unexplored 
by human researchers, they will produce only similar 
chemotypes (me-too moieties) if trained on datasets 
primarily consisting of one type of molecular property. 
Consequently, they will be unable to generate results in 
underrepresented chemical spaces, which are vast and 
multidimensional.

To build a robust and dependable AI platform for 
in silico drug discovery, AI systems should be trained on 
the entire drug evolution process, from hit identification to 
lead optimization, clinical candidate selection, and market 
authorization, rather than solely on approved marketed 
products. However, a significant portion of historical 
data from various discovery programs is privately owned 
by innovators. The drug discovery and development data 
available in the public domain are stored in silos and 
have not been properly connected or integrated. Many 
AI businesses are grappling with massive amounts of 
disconnected data spread across too many verticals, leaving 
them to learn by doing.

Occasionally, AI-driven in silico drug development 
initiatives produce molecules with structures that are 
challenging for medicinal chemists to synthesize in reality. 
Combining GenAI with conventional experimental 
techniques will enhance the drug development process, 
making it faster and more affordable while generating 
more effective and customized candidate molecules. 
However, modern AI-based approaches cannot completely 
replace traditional experimental techniques as well as 
the invaluable knowledge and experience of human 
researchers.52 A recent report revealed that the success rate 
of AI-derived molecules is 80 – 90% in phase I trials but 
drops to approximately 40% in phase II trials.53 GenAI can 
only make predictions based on currently accessible data, 
and experienced human drug hunters are still needed for 
result validation and interpretation. Thus, GenAI alone 
may not be reliable in aspects that directly affect people’s 
health. Nevertheless, there is an opportunity to expedite 
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the entire process of finding novel drugs and accelerating 
pre-clinical and clinical developments by combining 
the predictive powers of GenAI with the knowledge and 
experience of human researchers.

5. Conclusion
AI, in particular GenAI, is navigating drug hunters in 
the development of new therapeutics and emerged as a 
proficient alternative tool to the traditional drug discovery 
approach. The advanced AI/ML/DL transformative 
tools are expediting drug discovery by assisting target 
identification, computational chemistry, predicting drug–
target interactions, facilitating in-silico pharmacology 
analysis, and evaluating off-target toxicity. Based on AI/
ML readouts, the compounds can be prioritized for wet-
laboratory profiling, thus reducing the cost and time of pre-
clinical drug development. AI/ML-driven approaches have 
been leveraged for designing clinical prototype formulation 
and also revolutionizing clinical trials by better patient 
selection, predicting safety and tolerability signals for early 
action, and improving the clinical trial success rate.

Furthermore, AI/ML tools are being effectively utilized 
for generating clinical trial study protocols, comprehensive 
reports, and drawing meaningful conclusions out of the 
voluminous data generated during multicentric clinical 
trials. We may witness AI-generated drugs hitting the 
market sooner than later.
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